
SECURE TRANSACTION MANAGEMENT AND QUERY PROCESSING IN
MULTILEVEL SECURE DATABASE SYSTEMS

Brajendra Panda
The College of West Virginia

William Perrizo and Ramzi Haraty
North Dakota State University

Key words
Multilevel Secure Database Systems, Data and
Classifications, Concurrency Control, Querry Processing.

User

Abstract

In a multilevel secure database system, every data item is
assigned a classification level and each user that accesses the
data has a clearance level. Users can read data items that
exist at a lower level and write at their own level. In such
systems multilevel databases may be partitioned and stored as
single-level databases. To construct a multilevel relation,
repeated joins of different single level base relations are
taken, thus resulting in delayed query response time.
However, trying t o accelerate transactions might establish
covert channels which can send high level sensitive
information to low level users. This paper describes secure
algorithms for both concurrency control and query processing
in such systems and shows how these two techniques could be
integrated together to give best performance. The data
structures, needed in these algorithms, are based on bit vector
techniques developed in [13], and [14]. Our method
accelerates both read-only (queries) and read-write
transactions in a secure and correct manner.

Introduction

Many military and industrial applications require the use of
multilevel secure database systems (MLS/DBSs) where every
user has a clearance level and every data item has a
classification level. In the kemelized architecture, as
described in [1], data are separated and stored in different
containers according to classification level. Thus, when a

at a higher clearance level needs to read low level data,
he/she must access different containers. This results in a
delayed query response time. So query acceleration for high
level users, in order to make a fast decision, is quite essential.
But without a proper concurrency control technique this
method would establish covert channels that could transmit
sensitive information downward violating the system's

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

O 1994 ACM 089791-.647.-6/ 94/0003 $3.50

363

security policy [9]. Thus, along with the query acceleration
technique, a supportive-concurrency control mechanism is
absolutely necessary in such .secure systems. Again,
integrating both methods needs to be done in a secure fashion
to avoid any possibility of illegal information flow. Since this
area is fairly new, no research has been done in developing an
integrated concurrency control and query acceleration
mechanism. A number of published papers about concurrency
control algorithms are: ([6], [7], [8], [12], and [17]) and about
query acceleration algorithms are: ([16], and [15]). In this
paper, we have developed a concurrency control technique
based on the ROLL object [13] and then integrated this
method with the query acceleration technique based on the
secure DVA method [15].

In the multilevel secure database environment, a relation, R,
is represented by the schema R(Ai,C 1 ,An,Cn,TC), where
C i is the classification of the attribute A i. The domain of C i
is the range of cl~. sifications for data that can be associated
with attribute A i and the domain range(Ai) = [Li,H i] which is
the sub lattice of the lattice of access classes. The TC
attribute in the schema represents the Tuple Class of the
record, which is the least upper bound of the attribute
classifications in the tuple. Figure 1 illustrates a multilevel
relation MISSILE with three attributes: name, range, and
speed of different missiles.

Name Range Speed TC

MT1 U 350 U 800 C C
NT5 U 450 U 800 U U
NT5 U 480 C 750 C C
DNT U 400 U 800 U U
DNT U 450 C 800 U C
KRI U 500 U 700U U

FD7 C 450 C 850 C C

KR.1 C 400 C null C C

Figure 1: A multilevel relation MISSILE.

Our database model follows the SeaView model [11] that was
developed in a joint effort by SKI International and Gemini
Computers, This model is a research prototype based on the
Kemelized approach, and uses element level classification of
data. In this model, the multilevel relations are partitioned
both vertically and horizontally into single-level base relations
and then are stored separately. For the decomposition and

recovery algorithms of multilevel relations in the SeaView,
readers are referred to ([5], [10]). Figure 2 below shows the
base relations obtained after decomposing the MISSILE
relation-given in Figure l.

MISSILEname,u MISSILErange,u, u MISSILEspeed,u,u
MT1 MTI 350 NT5 800
NT5 KR1 500 DNT 800
DNT NT5 450 KR1 700
KR1 DNT 400

MISSILErange,u,c MISSILEspeed,u,c
DNT 450 NT5 750
N'r5 480 MT1 800

MISSILEname,c MISSILEran~e.c, c MISSILEspeed,c,c
FD7 FD7 450 FD7 850
K.RJ K.RI 400

Figure 2: The base relations for the MISSILE relation.

The query acceleration mechanism used m this paper is based
on the DVA technique that was initially introduced in [14]
and modified m [15] to fit in the multilevel secure database
system environment. For the rest of this paper, we denote
their technique as MLS-DVA. As described in [15], the
acceleration of queries in the MLS-DVA results from the
speed of operation on bit vectors and the restrictions of I/O to
only those pages that contain the tuples that participate in the
final result. In their work, the authors have shown that the
MLS-DVA approach achieves a significant performance
improvement when the multilevel query involves selection on
one or more attributes of the multilevel relation. Unlike the
SeaView recovery mechanism, this approach generates no
spurious tuples. The concurrency control algorithm, based on
the ROLL model [13], is designed in such a manner that it
uses minimal extra structure needed beyond what is described
in [15]. This method is correct, secure, free from livelocks
and also free from deadlocks. As for the security model, we
assume the well-known Bell-LaPadula model [2].

The M L S - D V A Method

The MLS-DVA algorithm requires that for .each base relation
a bit vector, called a Domain Vector (or DV) must be
maintained. A DV helps m determining the presence or
absence of a value in a relation's joining attribute (i.e., the
primary key attribute, in this situation, for each base relation)
by the presence or absence of a I-bit in the corresponding
position in the vector." The correspondence between a value
and its position in the DV (denoted by value identifier or rid),
at each level, is provided by the primary key relation and the
relative record numbers of its tuples. Thus, the number of
bits in the DVs, at a given level, is the same as the number of

records in the primary key relation that exists at that level.
The reader should note. that the DVs for the primary key
relations will consist of all ones and hence need not be
maintained.

A second.sl~mctture Domain Value Index (DVI) might be
necessary for each base relation, if the base relations are not
indexed on the primary key attribute. A DVI provides the
mapping between a vid and the address of the tuple
containing the corresponding domain value. Figure 3.1 and
3.2 show the data structures for the base relations given in
Figure 2.

DV.MISSlLErange,u, u =1111 DV.MlSSiLEspeed,u, u =(3111
DV.MISSILErange,u, c =(3110 DV.MISSlLEspeed,u, c =I 100
DV.MISSILErange,c, c =11 DV.MISSILEspeed,c, e =10

Figure 3.1: The DVs for the base relations

MISSILEB..~._~. ~
rid rec#
1 1
2 2
3 3
4 4

MISSILE.range,u,u MISSiLEspeed,u,u
vid rec# vid rec#

1 1 2 1
2 3 3 2
3 4 4 3
4 2

MIS S~.~q_.~_g.~.~9. MISSILErange,u,c
rid rec# rid rec#
2 2 1 2
3 1 2 1

MISSILEname,¢ MISSILErange,c,c /vlISSILEspeed,c, c
vid rec# vid rec# vid rec#

1 1 1 1 1 1
2 2 2 2

Figure 3.2: The DVIs for the base relations.

The MLS-DVA algorithm is as follows:
First, a Query Vector at each level, x, (denoted by QV x) is
constructed m which the number of bits is the same as the
number of entries m the primary key relation at level x. A bit
is set to 1 in this vector at position i, if the corresponding vid
at relative record number i m the key relation participates in
the query. However, if the query does not involve any
selection at level x, the QV x would be entirely l's. Otherwise,
the base relations having the participating attributes are read
at each level, x, and the selected vid positions in QV x are set
to ones. If there is more than one attribute involved in the
selection criteria, then the smallest participating base relation
is read. The selected rids are dropped in the index of the
next smallest participating base relation to avoid reading non-
participating pages, and then the selection criteria are applied
to further reduce the number of vids. By continuing this
process for all participating base relations, a fully reduced list
is obtained and then the query vector is built.

3 6 4

As mentioned in [15], the polyinstantiated elements create
spurious tuples during the outer join process.
Polyinstantiation is necessary in order to avoid covert
channels and dement polyinstantiation means more records
than one exist with the same primary key value but have
different non-key values at different levels. In order to avoid
the generation of spurious tuples, polyinstantiated elements

'need to be proeessed in a different manner. The attribute
relations that are investigated for this purpose are the ones
having the attributes required for the output of the query
result only. At each level x, a Polyinstantiated Domain
Vector, PDVx,y is created in the following way for each
level y such that x < y.

Let PDVAi,x,y be the vector obtained by logically ORing the
domain vectors: DV.RAi,x,z where x < z < y and A i is the
attribute required in the output. Next, PDVAi,x,y is
constructed by logically ANDing each PDV'Ai,x,y with the
corresponding DV.RAi,x,y. The positions of 1 bits in this
vector denotes the positions of those vids at level x, that have
at least one polyinstantiated element for the .particular
attribute A i up to level y. Then, PDVx,y is constructed by
ORing all P D. VAi,x,yS, which represents the rids having
polyinstantiated elements in their records that are visible to
users up to level y.

Next, for each level x, the rids that do not participate in the
query and/or do not have any polyinstantiated elements
visible up to level y are filtered out. The vector that
represents such information is obtained bY logically ANDing
QV x with PDVx,y , and is denoted by PQVx,y. The reader
should note that QV x represents the key values at level x that
participate in the query irrespective of the fact whether or not
their corresponding records have any polyinstantiated
elements.

Before carrying on any build or probe phase ofjoim, a table,
called Select Omit Table (denoted by SOT x at each primary
key level x) is built. The number of columns in each SOT is
the same as the number of attributes needed in the output, and
the number of rows is the exact number of records that would
appear in the output. Each element in such a table at level x
consists of two components: the first gives the address of a
tuple and the second represents the attribute classification y
of the base relation, RA.i,x,y, where the tuple appears.

To construct SOTx, QV x is taken first and scanned to find the
position of one-bits in it. The position of such a bit indicates
that the corresponding key position would appear in the
result. To find out the record number of such a key value in
attribute relation A i that is required in the output, the
corresponding position in the domain vector, DV.RAi,x,x, is
searched. If the bit is one, then the vial is dropped in the DVI
of RAi,x,x to get the record position and the (record address,
x) pair is entered in SOT x under the column A i. Otherwise,
DV.RAi,x,z, where z is the next higher level of x in the
security lattice, is checked. The search continues up .to level

b. If a one bit is detected, the corresponding index is
checked, and the (record address, z) pair is entered in SOT x
under A i column. Next PQVx, y is scanned for the presen~
of 1 bits. But this time the search starts from the DV of base
relation RAi,x,y and, if not found, continues downward in the
security lattice until the DV of RAi,x,x is searched.

After constructing SOT x for a given x, the element values in
each column are sorted in ascending order. This helps
minimize the number of page reads from the disk [14]. Then
the records are retrieved from the base relations in the
following way. If the element (n,z) appears under column A i,
the record with address n is retrieved from the relation
RAi,x,z. Then the build and probe phases of join are
performed. For a better clarification of the algorithm, its
security, and performance analysis, the reader is referred to
[15].

Concurrency Control Issues

Our concurrency control model is based on the Request Order
Linked List (ROLL) object [13]. This non-blocking protocol
eliro.mates deadlocks, livelocks, and also the need for a
critical section "scheduler" module in the system. A ROLL
object is a linked list of bit vectors that uses three simple
operations, POST, CHECK, and RELEASE, which can be
performed on that list by individual transaction managers.

The basic ROLL method uses a bit vector, known as Request
Vector (RV), for each active transaction to indicate requests
for access to data items by that transaction. For each data
item, there are two bits, one read bit and one write bit,
representing the read and write request by the transaction to
that item. A bit-value 1 means the transaction requests access
to the item corresponding to that bit position, while bit-value
0 means that it does not.

After creating a RV as described above, a transaction POSTs
its RV into the tail of the ROLL. This POST operation
establishes the serialization partial order of transactions and
is the only operation that must be atomic. The CHECK
operation allows a transaction to determine the availability of
data items. A transaction CHECKs by performing the logical
OR of all RVs ahead of its own RV in the list. In the
resulting vector, a 1 means the item corresponding to that
position is unavailable and 0 means it is available. CHECK
can be repeated at any time to determine which needed items
have become available since the last CHECK operation. To
RELEASE a data item after processing it, the transaction
simply flips the corresponding bit from a 1 to a 0. The next
transaction POSTed for that item will then find the item
available upon performing the CHECK operation.

Next we describe a modified ROLL model to adapt to the
multilevel secure database systems environment.

365

The CC Algorithm

In this model, the ROLL object consists of two layers. The
first is the Inter-container ROLL (IROLL) layer, and the
second is the container ROLL (denoted by ROLL for the rest
of the paper) layer, one at each level. The IROLL is
responsible for nminminins-consistency of transaction
POSTings across containers, and a ROLL at each container
helps in achieving serializability among all transactions
accessing that container.

When a high transaction requests a read access to a low data
item, it must not set any lock on it; otherwise, covert channels
could be established. On the other hand, having such a
transaction wait creates unavailability problems. To
eliminate these two problems, multiversioni.ng of data is
utilized. In our model, each write on a data item x produces a
new version which follows the POST order of the transaction
that wrote x. In this paper, the term "version" refers to a
value written by a committed transaction.

Or~..~lfiQd Co¢~3¢~al Seael

Figure 4: The ROLLs at different containers and the IROLL

Figure 4 shows an instance of ROLL structures at three
different levels and the IROLL structure. In this figure Txn
denotes a transaction with security level x and post order n.
In the kernelized architecture, all write operations are "local"
and some read operations are "global" (across security levels);
hence we call a transaction, local or global depending on the
types o f operations the transaction requests. The concurrency
control algorithm is presented below. The proof of the
algorithm is omitted due to space constraints. Interested
readers can refer to [1.8] for the proof.

1. When a local transaction enters the system for execution,
its request vector (RV) will be POSTed in the ROLL object
that exists at the same level of the transaction.

2. When a global transaction enters the system for execution,
a Global Request Vector (GRV) is created in which I bits
are set for each local container where access is needed.
Then the GRV is POSTed in the IROLL.

3. The IROLL is CHECKed periodically to see if any of the
containers requested by any of the transactions are
available.

3.1. If a container requested by a transaction, T i, is
available at a lower level, then the Transaction
Mauager running on behalf of T i, TMi, is asked to get
the entry point to the ROLL.

3.2. If a container requested by T i is available at the same
level of T i, then T/vi i is asked to POST its RV in the
ROLL.

4. When a transaction, Ti, is POSTed locally in a ROLL or
gets an entry point to the ROLL, its corresponding bit is
RELEASEd in the IROLL. The process continues until all
the bits in the GRV of T i are RELEASEd.

5. When a transaction T i, wants to read a data item x such
that.SL(x) < SL(Ti), then T/vl i CHECKs the ROLL at
SL(x) from its entry point onwards for any conflicts. SL(a)
denotes the security level of item a.
5.1. If a conflict exists, then TM i waits to reCHECK later.
5.2. If there is no conflict, then T i reads the highest

version of x that is less than or equal to its entry point.
6. When T i wants to read or write x such that SL(x) = SL(Ti),

then TM i CHECKs for any conflicting operations on the
same data item, x, that are ahead of it in the ROLL•
6.1. I fa conflict exists, then TM i waits to reCHECK later.
6•2. If there is no conflict and T i has a read request, then it

reads the highest version of x that is less than or equal
to its POST order.

6.3. If there is no conflict and T i has a write request, then
it produces a new version (same as its POST order) of
X.

7. Transactions RELEASE their bits in the RV during their
commit time only.

Subsetting ROLL

To obtain maximum concurrency possible in each ROLL at
the container level we need to have read and write bits for
each attribute of each tuple of every base relation. But this
unnecessarily increases the length or the RVs in the ROLL,
although most of the transactions would need very f ew
read/write bits as 1% and the rest of the bits as zeros. To
eliminate this problem, we suggest subdividing the ROLL at
each container into several sub-ROLLs.

In order to maintain execution consistency among
transactions, one container ROLL is required, denoted by
CROLL, in which two bits (one read bit and one write bit) are
set for each base relation. Thus, the number of bits in a
CROLL will be twice the number of base relations at that
level. Then there needs to be a relation ROLL, denoted by
RROLL, for each base relation, which has twice as many bits
as the number of records in the corresponding primary key
relation. Every global transaction (after obtaining a POST
signal from IROLL) and every local transaction must POST
its RV that represents the base relations needs to be accessed
in CROLL. Performing a CHECK in CROLL, it determines
which of the base relations are available for POSTing. If all
the tuples in a base relation have to be read (or modified), the
reading (or modification) could be done without RELEASing

366

the read (or write) bit from the CROLL and there is no need
for POSTing a RV in th~ corresponding RROLL. Otherwise,
a RV representing the records to be accessed, must be
POSTed in the R.ROLL for that relation. After a successful
POSTing, the corresponding bit in the CROLL must be
RELEASEd.

When .a transaction at a higher level wants to get an. entry
point to ROLL at lower level, as described in the previous
section, it directly does so at the required RROLLs bypassing
ta.te CROLL. In RROLL, transactions perform CHECK and
RELEASE operations as mentioned in the previous algorithm.
The bits in these ROLLs are RELEASEd during the commit
time only. A new version of a data item bears the post order
of the writing transaction at the RROLL.

Different RROLLs and the CROLL needed in confidential
level for the relations given in figure 2 are shown in figure 5.

~i75n'IT~ I

/ CROU. \ \ \

• \

MlSrg.u.¢ MlSsp.u.¢ MlSnm.¢ M~Srg.¢.¢ MISsp.¢.c

RROI..Ls

Figure 5: The RROLLs and the CROLL at confidential level

Query Processing

This section describes the process to be followed in order to
complete a query. When a subject submits a query that would
access different security levels, a GRV needs to be
con.st.meted and POSTed in the IROLL and upon availability
of low level containers, an entry point to each required
RROLL is made. Every local transaction and every global
transaction upon indication from the IROLL must POST in
the CROLL at its own level in the following way. First, a RV
is constructed by determining which attributes of the
multilevel relation need to be accessed and then the RV is
POSTed in the CROLL. Next, if the query requires a
selection, then a CHECK on the CROLL detenlmles whether
the base relation(s) to beread for the selection criteria is(are)
available or not. If not, the CHECK is done periodically until
so determined. Then the entire base relation is read, and a
QV is constructed as described in section 2.2. At any lower
level the QV is constructed by reading the correct version of
the base relation (see section 3.1). Upon completion of the
read, the corresponding bit is RELEASEd in the RV of the
CROLL. Next, the QV so obtained is modified as follows. If
a write access is required on any of the base relations, after
every bit in the QV, a zero bit, as the read bit, is added. In
case of a read access, a zero bit is added, as a write bit, after

every bit present in the QV. This modified QV is then
POSTed in the required RROLLs whenever a CHECK
operation indicates the availability of the R.ROLLs. Then, for
every such POSTing the bit in the CROLL is RELEASEd.

Using the DVA algorithm, tlie required pages are brought into
main memory and the read/write operations are performed.
The bits in the RROLLs are RELEASEd during the commit
time.

An Example

Let us consider a query in the MISSILE relation given in
Figure 1, by a user having clear~ce up to confidential level:

SELECT * FROM MISSILE WHERE range >_ 400

Since this is a global query, a GRV = 1100 (assuming there
are four classification levels) is constructed with the 1-bits
for accessing unclassified and confidential containers. Then,
it is POSTed in the IROLL. After performing a CHECK on
the IROLL, if it is determined that the unclassified container
is available for POSTing, the Transaction Manager is
informed. Then the transaction .manager obtains art entry
point to the RROLLs of the relations MISSiLErange,u, u and
lvlISSILEspeed, u, u. If the local container is available, the RV
= 0010101010 is created. This is because there are five base
relations at the confidential level and all of them except for
the MISSILEname,c must be read. We assume that in every
pair of bits the first bit represents a read request and the
second represents a write. This RV is indicated in figure 5 as

To7 in CROLL.

I f the correct version is available, the MISSILErange,u, u is
read at the unclassified level and by applying the selection
criteria, the QV u' is built as 0111. By performing a CHECK
in the CROLL at confidential level if it is found that
MISSILErange,u, c is available for reading, the entire relation
is read without having to POST an RV in the RROLL of
MISSiLErange,u, c. The bit in CROLL is RELEASEd. Then
applying the selection criteria QVu" = 0011 is constructed.
By logically ORing QV u' and QVu", QV u = O l 11 is obtained.
Since a read access is required on the base relations, art extra
zero bit for every bit is added as write bit to the QV u to give
the modified QV u = 00101010. Similarly, upon availability,
by reading the relation MISSILErange,c, c QV c = 11 is built.
Adding extra write bits the modified QV c = 1010 is obtained.

After reading MiSSILErange,u, c and MISSiLErange,c, c, the
bits in the RV on CROLL are RELEASEd. Then after
performing CHECKs on the CROLL if determined that the
base relation MISSiLEspeed,u, c is available, the QV u is
POSTed in the corresponding R.ROLL and the bit in CROLL
is RELEASEd. Similarly, QV c is POSTed in the RROLL of
MISSILEspeed,c, c and the corresponding bit in the CROLL is
RELEASEd. These QVs are denoted in figure 5 by To6 and
Tc8 in the RROLLs MISSILEspeed,u, c and
MISSILEspeed,c, c respectively. Next, CHECK on the

3 6 7
¸ 4 ¸ , ¸ . ¸ • •

RROLLs are performed and then by applying the DVA
algorithm given in section 2.2 the SOT c and a part of SOT u
are built. To complete SOTu, correct versions (as determined
by the concurrency control algorithm described in section 3.1)
of the base relations at the unclassified level are read in a
similar way. A detailed walk through of the DVA algorithm
on the same example and the result of the query are given in
[15] and will not be discussed here due to space constraints.

Conclusion

Database researchers have constantly expressed concern about
the performance of multilevel database management systems
based on the kernelized architecture. One of the several
reasons for this is that, satisfying multilevel queries involves
taking repeated joins of base relations, and joins are always
expensive operations. The performance degrades when a high
level transaction waits to obtain a read access of a low data
because of the concurrency control protocol that is designed to
reduce the risk of covert chaunels. In this paper, we have
introduced a correct and.secure concurrency control technique
that accelerates joins in kemelized multilevel secure database
systems by making the use of the DVA technique given in
[15]. Our method is correct, deadlock free, livelock free, and
secure. It establishes no downward information flow by any
direct or indirect means that violate the system's security
policy. As a future research objective, we would like to
investigate the area of multilevel secure object oriented
databases.

References

[1] "Multilevel Data Management Security", Committee on
Multilevel Data Management Security, Air Force Studies
Board, National Research Council, Washington D.C.,
1993.

[2] D. E. Bell and L. J. LaPadula, "Secure Computer Systems:
Unified Exposition and Multics Interpretation", The
Mitre Corporation, March 1976.

[3] P. A. Bemstein, V. Hadzilacos, and N. Goodman,
"Concurrency Control and Recovery in Database
Systems", Addison-Wesley, Massachusetts, 1987.

[4] Dorothy E. Denning, "Cryptography and Data Security",
Addison-Wesley, Reading, Massachusetts, 1982.

[5] Dorothy E. Defining and Teresa F. Lunt, "A Multilevel
Relational Data Model", Proc. of the IEEE Symposium
on Security and Privacy, p 220- 234, Oakland, CA,
April 1987.

[6] S. Jajodia and V. Atluri, "Alternative Correctness Criteria
for Concurrent Execution of Transactions in Multilevel
Secure Databases", Proc. of the IEEE Symposium on
Security and Privacy, p. 216-224, Oakland, CA, May
1992.

[7] T. F. Keefe and W. T. Tsai, "Multiversion Concurrency
Control for Multilevel Secure Database Systems", Proc.
of the IEEE Symposium on Security and Privacy, p. 360-
368, Oakland, CA, May 1990.

[8] B. Kogan and S. Jajodia, "Secure Concurrency Control",
Proc. of the 3rd RADC Workshop in Multilevel Database
.Security, Castille, NY, June 1990

[9] B. W. Lampson, "A Note on the Confinement Problem",
CACM, (16)10 p 613-615, October 1973.

[10] T. F. Lunt, R. R. Schell, W. R. Shockley, and D.
Warren,"Toward a Multilevel Relational Data
Language", Proc. of the IEEE Symposium on Research in
Security and Privacy, p. 72-79. 1988.

[11] Teresa F. Lunt et al., "The SeaView Security Model",
IEEE Transactions on Solf~vare. Engineering, Vol. 16,
No. 6, June 1990.

[12] W. T. Maimone and I. B. Greenberg, "Single-level
Multiversion Schedulers for Multilevel Secure Database
Systems", Proc. of the 6th Annual Computer Security
Applications Conf., p. 137-147, Tucson, AZ, Dec. 1990.

[13] W. Perrizo, "Request Order Linked List (ROLL): A
Concurrency Control Object for Centralized and
Distributed Database Systems", Proc. of the 7th
International Conference on Data Engineering, p. 278-
285, Kobe, Japan, April 1991.

[t4] W. Perrizo, J. Oustafson, D, Thureen, D. Wenberg, and
W. Davidson, "Domain Vector Accelerator (DVA): A
Query Accelerator for Relational Operations", Proc. of
the 7th International conference on Data Engineering,
Kobe, Japan, 1991.

[15] W. Perrizo and B. Panda, "Query Acceleration in
Multilevel Secure Database Systems", Proc. of the 16th "
National Computer Security Conference, Baltimore, MD,
September 1993.

[16] B. Thuraisingham, W. T. Tsai, and T. F. Keefe, "Secure
Query Processing Using AI Techniques", Proc. of the
21st Hawai International Conference on System
Sciences, IEEE Computer Society Press, 1988.

[17] R. Haraty, "Transaction Management in Multilevel
Secure Database Systems", Ph.D. Dissertation, North
Dakota State Umversity, Fargo, ND, December 1992.

[18] B. Panda, "Query Processing in Multilevel Secure
Database Systems", Ph.D. Dissertation, North Dakota
State University, Fargo, ND, December 1993.

368

