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User 

Abstract 

In a multilevel secure database system, every data item is 
assigned a classification level and each user that accesses the 
data has a clearance level. Users can read data items that 
exist at a lower level and write at their own level. In such 
systems multilevel databases may be partitioned and stored as 
single-level databases. To construct a multilevel relation, 
repeated joins of different single level base relations are 
taken, thus resulting in delayed query response time. 
However, trying t o  accelerate transactions might establish 
covert channels which can send high level sensitive 
information to low level users. This paper describes secure 
algorithms for both concurrency control and query processing 
in such systems and shows how these two techniques could be 
integrated together to give best performance. The data 
structures, needed in these algorithms, are based on bit vector 
techniques developed in [13], and [14]. Our method 
accelerates both read-only (queries) and read-write 
transactions in a secure and correct manner. 

Introduction 

Many military and industrial applications require the use of 
multilevel secure database systems (MLS/DBSs) where every 
user has a clearance level and every data item has a 
classification level. In the kemelized architecture, as 
described in [1], data are separated and stored in different 
containers according to classification level. Thus, when a 

at a higher clearance level needs to read low level data, 
he/she must access different containers. This results in a 
delayed query response time. So query acceleration for high 
level users, in order to make a fast decision, is quite essential. 
But without a proper concurrency control technique this 
method would establish covert channels that could transmit 
sensitive information downward violating the system's 
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security policy [9]. Thus, along with the query acceleration 
technique, a supportive-concurrency control mechanism is 
absolutely necessary in such .secure systems. Again, 
integrating both methods needs to be done in a secure fashion 
to avoid any possibility of  illegal information flow. Since this 
area is fairly new, no research has been done in developing an 
integrated concurrency control and query acceleration 
mechanism. A number of  published papers about concurrency 
control algorithms are: ([6], [7], [8], [12], and [17]) and about 
query acceleration algorithms are: ([16], and [15]). In this 
paper, we have developed a concurrency control technique 
based on the ROLL object [13] and then integrated this 
method with the query acceleration technique based on the 
secure DVA method [15]. 

In the multilevel secure database environment, a relation, R, 
is represented by the schema R(Ai,C 1 ..... ,An,Cn,TC), where 
C i is the classification of  the attribute A i. The domain of C i 
is the range of cl~. sifications for data that can be associated 
with attribute A i and the domain range(Ai) = [Li,H i] which is 
the sub lattice of the lattice of access classes. The TC 
attribute in the schema represents the Tuple Class of  the 
record, which is the least upper bound of the attribute 
classifications in the tuple. Figure 1 illustrates a multilevel 
relation MISSILE with three attributes: name, range, and 
speed of different missiles. 

Name Range Speed TC 

MT1 U 350 U 800 C C 
NT5 U 450 U 800 U U 
NT5 U 480 C 750 C C 
DNT U 400 U 800 U U 
DNT U 450 C 800 U C 
KRI U 500 U 700U U 

FD7 C 450 C 850 C C 

KR.1 C 400 C null C C 

Figure 1: A multilevel relation MISSILE. 

Our database model follows the SeaView model [ 11 ] that was 
developed in a joint effort by SKI International and Gemini 
Computers, This model is a research prototype based on the 
Kemelized approach, and uses element level classification of 
data. In this model, the multilevel relations are partitioned 
both vertically and horizontally into single-level base relations 
and then are stored separately. For the decomposition and 



recovery algorithms of multilevel relations in the SeaView, 
readers are referred to ([5], [10]). Figure 2 below shows the 
base relations obtained after decomposing the MISSILE 
relation-given in Figure l. 

MISSILEname,u MISSILErange,u, u MISSILEspeed,u,u 
MT1 MTI 350 NT5 800 
NT5 KR1 500 DNT 800 
DNT NT5 450 KR1 700 
KR1 DNT 400 

MISSILErange,u,c MISSILEspeed,u,c 
DNT 450 NT5 750 
N'r5 480 MT1 800 

MISSILEname,c MISSILEran~e.c, c MISSILEspeed,c,c 
FD7 FD7 450 FD7 850 
K.RJ K.RI 400 

Figure 2: The base relations for the MISSILE relation. 

The query acceleration mechanism used m this paper is based 
on the DVA technique that was initially introduced in [14] 
and modified m [15] to fit in the multilevel secure database 
system environment. For the rest of this paper, we denote 
their technique as MLS-DVA. As described in [15], the 
acceleration of queries in the MLS-DVA results from the 
speed of operation on bit vectors and the restrictions of I/O to 
only those pages that contain the tuples that participate in the 
final result. In their work, the authors have shown that the 
MLS-DVA approach achieves a significant performance 
improvement when the multilevel query involves selection on 
one or more attributes of the multilevel relation. Unlike the 
SeaView recovery mechanism, this approach generates no 
spurious tuples. The concurrency control algorithm, based on 
the ROLL model [13], is designed in such a manner that it 
uses minimal extra structure needed beyond what is described 
in [15]. This method is correct, secure, free from livelocks 
and also free from deadlocks. As for the security model, we 
assume the well-known Bell-LaPadula model [2]. 

The M L S - D V A  Method  

The MLS-DVA algorithm requires that for .each base relation 
a bit vector, called a Domain Vector (or DV) must be 
maintained. A DV helps m determining the presence or 
absence of a value in a relation's joining attribute (i.e., the 
primary key attribute, in this situation, for each base relation) 
by the presence or absence of a I-bit in the corresponding 
position in the vector." The correspondence between a value 
and its position in the DV (denoted by value identifier or rid), 
at each level, is provided by the primary key relation and the 
relative record numbers of its tuples. Thus, the number of 
bits in the DVs, at a given level, is the same as the number of 

records in the primary key relation that exists at that level. 
The reader should note. that the DVs for the primary key 
relations will consist of all ones and hence need not be 
maintained. 

A second.sl~mctture Domain Value Index (DVI) might be 
necessary for each base relation, if the base relations are not 
indexed on the primary key attribute. A DVI provides the 
mapping between a vid and the address of the tuple 
containing the corresponding domain value. Figure 3.1 and 
3.2 show the data structures for the base relations given in 
Figure 2. 

DV.MISSlLErange,u, u =1111 DV.MlSSiLEspeed,u, u =(3111 
DV.MISSILErange,u, c =(3110 DV.MISSlLEspeed,u, c =I 100 
DV.MISSILErange,c, c =11 DV.MISSILEspeed,c, e =10 

Figure 3.1: The DVs for the base relations 

MISSILEB..~._~. ~ 
rid rec# 
1 1 
2 2 
3 3 
4 4 

MISSILE.range,u,u MISSiLEspeed,u,u 
vid rec# vid rec# 

1 1 2 1 
2 3 3 2 
3 4 4 3 
4 2 

MIS S~.~q_.~_g.~.~9. MISSILErange,u,c 
rid rec# rid rec# 
2 2 1 2 
3 1 2 1 

MISSILEname,¢ MISSILErange,c,c /vlISSILEspeed,c, c 
vid rec# vid rec# vid rec# 

1 1 1 1 1 1 
2 2 2 2 

Figure 3.2: The DVIs for the base relations. 

The MLS-DVA algorithm is as follows: 
First, a Query Vector at each level, x, (denoted by QV x) is 
constructed m which the number of bits is the same as the 
number of entries m the primary key relation at level x. A bit 
is set to 1 in this vector at position i, if the corresponding vid 
at relative record number i m the key relation participates in 
the query. However, if the query does not involve any 
selection at level x, the QV x would be entirely l's. Otherwise, 
the base relations having the participating attributes are read 
at each level, x, and the selected vid positions in QV x are set 
to ones. If there is more than one attribute involved in the 
selection criteria, then the smallest participating base relation 
is read. The selected rids are dropped in the index of the 
next smallest participating base relation to avoid reading non- 
participating pages, and then the selection criteria are applied 
to further reduce the number of vids. By continuing this 
process for all participating base relations, a fully reduced list 
is obtained and then the query vector is built. 
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As mentioned in [15], the polyinstantiated elements create 
spurious tuples during the outer join process. 
Polyinstantiation is necessary in order to avoid covert 
channels and dement polyinstantiation means more records 
than one exist with the same primary key value but have 
different non-key values at different levels. In order to avoid 
the generation of spurious tuples, polyinstantiated elements 

'need to be proeessed in a different manner. The attribute 
relations that are investigated for this purpose are the ones 
having the attributes required for the output of the query 
result only. At each level x, a Polyinstantiated Domain 
Vector, PDVx,y is created in the following way for each 
level y such that x < y. 

Let PDVAi,x,y be the vector obtained by logically ORing the 
domain vectors: DV.RAi,x,z where x < z < y and A i is the 
attribute required in the output. Next, PDVAi,x,y is 
constructed by logically ANDing each PDV'Ai,x,y with the 
corresponding DV.RAi,x,y. The positions of 1 bits in this 
vector denotes the positions of those vids at level x, that have 
at least one polyinstantiated element for the .particular 
attribute A i up to level y. Then, PDVx,y is constructed by 
ORing all P D. VAi,x,yS, which represents the rids having 
polyinstantiated elements in their records that are visible to 
users up to level y. 

Next, for each level x, the rids that do not participate in the 
query and/or do not have any polyinstantiated elements 
visible up to level y are filtered out. The vector that 
represents such information is obtained bY logically ANDing 
QV x with PDVx,y , and is denoted by PQVx,y. The reader 
should note that QV x represents the key values at level x that 
participate in the query irrespective of the fact whether or not 
their corresponding records have any polyinstantiated 
elements. 

Before carrying on any build or probe phase ofjoim, a table, 
called Select Omit Table (denoted by SOT x at each primary 
key level x) is built. The number of columns in each SOT is 
the same as the number of attributes needed in the output, and 
the number of rows is the exact number of records that would 
appear in the output. Each element in such a table at level x 
consists of two components: the first gives the address of a 
tuple and the second represents the attribute classification y 
of the base relation, RA.i,x,y, where the tuple appears. 

To construct SOTx, QV x is taken first and scanned to find the 
position of one-bits in it. The position of such a bit indicates 
that the corresponding key position would appear in the 
result. To find out the record number of such a key value in 
attribute relation A i that is required in the output, the 
corresponding position in the domain vector, DV.RAi,x,x, is 
searched. If the bit is one, then the vial is dropped in the DVI 
of RAi,x,x to get the record position and the (record address, 
x) pair is entered in SOT x under the column A i. Otherwise, 
DV.RAi,x,z, where z is the next higher level of x in the 
security lattice, is checked. The search continues up .to level 

b. If  a one bit is detected, the corresponding index is 
checked, and the (record address, z) pair is entered in SOT x 
under A i column. Next PQVx, y is scanned for the presen~ 
of 1 bits. But this time the search starts from the DV of base 
relation RAi,x,y and, if not found, continues downward in the 
security lattice until the DV of RAi,x,x is searched. 

After constructing SOT x for a given x, the element values in 
each column are sorted in ascending order. This helps 
minimize the number of page reads from the disk [14]. Then 
the records are retrieved from the base relations in the 
following way. If the element (n,z) appears under column A i, 
the record with address n is retrieved from the relation 
RAi,x,z. Then the build and probe phases of join are 
performed. For a better clarification of the algorithm, its 
security, and performance analysis, the reader is referred to 
[15]. 

Concurrency Control Issues 

Our concurrency control model is based on the Request Order 
Linked List (ROLL) object [13]. This non-blocking protocol 
eliro.mates deadlocks, livelocks, and also the need for a 
critical section "scheduler" module in the system. A ROLL 
object is a linked list of bit vectors that uses three simple 
operations, POST, CHECK, and RELEASE, which can be 
performed on that list by individual transaction managers. 

The basic ROLL method uses a bit vector, known as Request 
Vector (RV), for each active transaction to indicate requests 
for access to data items by that transaction. For each data 
item, there are two bits, one read bit and one write bit, 
representing the read and write request by the transaction to 
that item. A bit-value 1 means the transaction requests access 
to the item corresponding to that bit position, while bit-value 
0 means that it does not. 

After creating a RV as described above, a transaction POSTs 
its RV into the tail of the ROLL. This POST operation 
establishes the serialization partial order of transactions and 
is the only operation that must be atomic. The CHECK 
operation allows a transaction to determine the availability of 
data items. A transaction CHECKs by performing the logical 
OR of all RVs ahead of its own RV in the list. In the 
resulting vector, a 1 means the item corresponding to that 
position is unavailable and 0 means it is available. CHECK 
can be repeated at any time to determine which needed items 
have become available since the last CHECK operation. To 
RELEASE a data item after processing it, the transaction 
simply flips the corresponding bit from a 1 to a 0. The next 
transaction POSTed for that item will then find the item 
available upon performing the CHECK operation. 

Next we describe a modified ROLL model to adapt to the 
multilevel secure database systems environment. 
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The CC Algorithm 

In this model, the ROLL object consists of  two layers. The 
first is the Inter-container ROLL (IROLL) layer, and the 
second is the container ROLL (denoted by ROLL for the rest 
of  the paper) layer, one at each level. The IROLL is 
responsible for nminminins-consistency of  transaction 
POSTings across containers, and a ROLL at each container 
helps in achieving serializability among all transactions 
accessing that container. 

When a high transaction requests a read access to a low data 
item, it must not set any lock on it; otherwise, covert channels 
could be established. On the other hand, having such a 
transaction wait creates unavailability problems. To 
eliminate these two problems, multiversioni.ng of data is 
utilized. In our model, each write on a data item x produces a 
new version which follows the POST order of the transaction 
that wrote x. In this paper, the term "version" refers to a 
value written by a committed transaction. 

Or~..~lfiQd Co¢~3¢~al Seael  

Figure 4: The ROLLs at different containers and the IROLL 

Figure 4 shows an instance of  ROLL structures at three 
different levels and the IROLL structure. In this figure Txn 
denotes a transaction with security level x and post order n. 
In the kernelized architecture, all write operations are "local" 
and some read operations are "global" (across security levels); 
hence we call a transaction, local or global depending on the 
types o f  operations the transaction requests. The concurrency 
control algorithm is presented below. The proof of the 
algorithm is omitted due to space constraints. Interested 
readers can refer to [1.8] for the proof. 

1. When a local transaction enters the system for execution, 
its request vector (RV) will be POSTed in the ROLL object 
that exists at the same level of  the transaction. 

2. When a global transaction enters the system for execution, 
a Global Request Vector (GRV) is created in which I bits 
are set for each local container where access is needed. 
Then the GRV is POSTed in the IROLL. 

3. The IROLL is CHECKed periodically to see if  any of  the 
containers requested by any of  the transactions are 
available. 

3.1. If  a container requested by a transaction, T i, is 
available at a lower level, then the Transaction 
Mauager running on behalf of  T i, TMi, is asked to get 
the entry point to the ROLL. 

3.2. If  a container requested by T i is available at the same 
level of  T i, then T/vi i is asked to POST its RV in the 
ROLL. 

4. When a transaction, Ti, is POSTed locally in a ROLL or 
gets an entry point to the ROLL, its corresponding bit is 
RELEASEd in the IROLL. The process continues until all 
the bits in the GRV of T i are RELEASEd. 

5. When a transaction T i, wants to read a data item x such 
that.SL(x) < SL(Ti), then T/vl i CHECKs the ROLL at 
SL(x) from its entry point onwards for any conflicts. SL(a) 
denotes the security level of item a. 
5.1. If a conflict exists, then TM i waits to reCHECK later. 
5.2. If there is no conflict, then T i reads the highest 

version of x that is less than or equal to its entry point. 
6. When T i wants to read or write x such that SL(x) = SL(Ti), 

then TM i CHECKs for any conflicting operations on the 
same data item, x, that are ahead of  it in the ROLL• 
6.1. I fa  conflict exists, then TM i waits to reCHECK later. 
6•2. If there is no conflict and T i has a read request, then it 

reads the highest version of x that is less than or equal 
to its POST order. 

6.3. If there is no conflict and T i has a write request, then 
it produces a new version (same as its POST order) of 
X. 

7. Transactions RELEASE their bits in the RV during their 
commit time only. 

Subsetting ROLL 

To obtain maximum concurrency possible in each ROLL at 
the container level we need to have read and write bits for 
each attribute of each tuple of every base relation. But this 
unnecessarily increases the length or the RVs in the ROLL, 
although most of the transactions would need very f ew 
read/write bits as 1% and the rest of  the bits as zeros. To 
eliminate this problem, we suggest subdividing the ROLL at 
each container into several sub-ROLLs. 

In order to maintain execution consistency among 
transactions, one container ROLL is required, denoted by 
CROLL, in which two bits (one read bit and one write bit) are 
set for each base relation. Thus, the number of bits in a 
CROLL will be twice the number of base relations at that 
level. Then there needs to be a relation ROLL, denoted by 
RROLL, for each base relation, which has twice as many bits 
as the number of  records in the corresponding primary key 
relation. Every global transaction (after obtaining a POST 
signal from IROLL) and every local transaction must POST 
its RV that represents the base relations needs to be accessed 
in CROLL. Performing a CHECK in CROLL, it determines 
which of the base relations are available for POSTing. If all 
the tuples in a base relation have to be read (or modified), the 
reading (or modification) could be done without RELEASing 
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the read (or write) bit from the CROLL and there is no need 
for POSTing a RV in th~ corresponding RROLL. Otherwise, 
a RV representing the records to be accessed, must be 
POSTed in the R.ROLL for that relation. After a successful 
POSTing, the corresponding bit in the CROLL must be 
RELEASEd. 

When .a transaction at a higher level wants to get an. entry 
point to ROLL at lower level, as described in the previous 
section, it directly does so at the required RROLLs bypassing 
ta.te CROLL. In RROLL, transactions perform CHECK and 
RELEASE operations as mentioned in the previous algorithm. 
The bits in these ROLLs are RELEASEd during the commit 
time only. A new version of a data item bears the post order 
of  the writing transaction at the RROLL. 

Different RROLLs and the CROLL needed in confidential 
level for the relations given in figure 2 are shown in figure 5. 

~i75n'IT~ I 

/ CROU. \ \ \ 

• \ 

MlSrg.u.¢ MlSsp.u.¢ MlSnm.¢ M~Srg.¢.¢ MISsp.¢.c 

RROI..Ls 

Figure 5: The RROLLs and the CROLL at confidential level 

Query Processing 

This section describes the process to be followed in order to 
complete a query. When a subject submits a query that would 
access different security levels, a GRV needs to be 
con.st.meted and POSTed in the IROLL and upon availability 
of  low level containers, an entry point to each required 
RROLL is made. Every local transaction and every global 
transaction upon indication from the IROLL must POST in 
the CROLL at its own level in the following way. First, a RV 
is constructed by determining which attributes of the 
multilevel relation need to be accessed and then the RV is 
POSTed in the CROLL. Next, if the query requires a 
selection, then a CHECK on the CROLL detenlmles whether 
the base relation(s) to beread for the selection criteria is(are) 
available or not. If  not, the CHECK is done periodically until 
so determined. Then the entire base relation is read, and a 
QV is constructed as described in section 2.2. At any lower 
level the QV is constructed by reading the correct version of 
the base relation (see section 3.1). Upon completion of  the 
read, the corresponding bit is RELEASEd in the RV of the 
CROLL. Next, the QV so obtained is modified as follows. If 
a write access is required on any of the base relations, after 
every bit in the QV, a zero bit, as the read bit, is added. In 
case of  a read access, a zero bit is added, as a write bit, after 

every bit present in the QV. This modified QV is then 
POSTed in the required RROLLs whenever a CHECK 
operation indicates the availability of the R.ROLLs. Then, for 
every such POSTing the bit in the CROLL is RELEASEd. 

Using the DVA algorithm, tlie required pages are brought into 
main memory and the read/write operations are performed. 
The bits in the RROLLs are RELEASEd during the commit 
time. 

An Example 

Let us consider a query in the MISSILE relation given in 
Figure 1, by a user having clear~ce up to confidential level: 

SELECT * FROM MISSILE WHERE range >_ 400 

Since this is a global query, a GRV = 1100 (assuming there 
are four classification levels) is constructed with the 1-bits 
for accessing unclassified and confidential containers. Then, 
it is POSTed in the IROLL. After performing a CHECK on 
the IROLL, if it is determined that the unclassified container 
is available for POSTing, the Transaction Manager is 
informed. Then the transaction .manager obtains art entry 
point to the RROLLs of the relations MISSiLErange,u, u and 
lvlISSILEspeed, u, u. If  the local container is available, the RV 
= 0010101010 is created. This is because there are five base 
relations at the confidential level and all of  them except for 
the MISSILEname,c must be read. We assume that in every 
pair of  bits the first bit represents a read request and the 
second represents a write. This RV is indicated in figure 5 as 

To7 in CROLL. 

I f  the correct version is available, the MISSILErange,u, u is 
read at the unclassified level and by applying the selection 
criteria, the QV u' is built as 0111. By performing a CHECK 
in the CROLL at confidential level if it is found that 
MISSILErange,u, c is available for reading, the entire relation 
is read without having to POST an RV in the RROLL of 
MISSiLErange,u, c. The bit in CROLL is RELEASEd. Then 
applying the selection criteria QVu" = 0011 is constructed. 
By logically ORing QV u' and QVu", QV u = O l 11 is obtained. 
Since a read access is required on the base relations, art extra 
zero bit for every bit is added as write bit to the QV u to give 
the modified QV u = 00101010. Similarly, upon availability, 
by reading the relation MISSILErange,c, c QV c = 11 is built. 
Adding extra write bits the modified QV c = 1010 is obtained. 

After reading MiSSILErange,u, c and MISSiLErange,c, c, the 
bits in the RV on CROLL are RELEASEd. Then after 
performing CHECKs on the CROLL if determined that the 
base relation MISSiLEspeed,u, c is available, the QV u is 
POSTed in the corresponding R.ROLL and the bit in CROLL 
is RELEASEd. Similarly, QV c is POSTed in the RROLL of 
MISSILEspeed,c, c and the corresponding bit in the CROLL is 
RELEASEd. These QVs are denoted in figure 5 by To6 and 
Tc8 in the RROLLs MISSILEspeed,u, c and 
MISSILEspeed,c, c respectively. Next, CHECK on the 
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RROLLs are performed and then by applying the DVA 
algorithm given in section 2.2 the SOT c and a part of SOT u 
are built. To complete SOTu, correct versions (as determined 
by the concurrency control algorithm described in section 3.1) 
of the base relations at the unclassified level are read in a 
similar way. A detailed walk through of the DVA algorithm 
on the same example and the result of the query are given in 
[15] and will not be discussed here due to space constraints. 

Conclusion 

Database researchers have constantly expressed concern about 
the performance of multilevel database management systems 
based on the kernelized architecture. One of the several 
reasons for this is that, satisfying multilevel queries involves 
taking repeated joins of base relations, and joins are always 
expensive operations. The performance degrades when a high 
level transaction waits to obtain a read access of a low data 
because of the concurrency control protocol that is designed to 
reduce the risk of covert chaunels. In this paper, we have 
introduced a correct and.secure concurrency control technique 
that accelerates joins in kemelized multilevel secure database 
systems by making the use of the DVA technique given in 
[15]. Our method is correct, deadlock free, livelock free, and 
secure. It establishes no downward information flow by any 
direct or indirect means that violate the system's security 
policy. As a future research objective, we would like to 
investigate the area of multilevel secure object oriented 
databases. 
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